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(FRACOD, σt / ν, non-linearity)     India. ( σ3 critical  ≈ UCS)                  (Q-system case records)

THREE INTERNATIONAL COLLEAGUES WHO HAVE MADE THE FOLLOWING ADVANCES POSSIBLE
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SUBJECTS DISCUSSED:

• DEEP TUNNELS (1 TO 3 km?) – what ‘SRF’ to use?
• VERTICAL CUTS in SOIL, CLIFFS in ROCK (10m to 100m?)
• MOUNTAIN WALLS (750 to 1,350m)
• JOINTED SLOPES – PROGRESSIVE FAILURE – CcSs criterion
• PREKESTOLEN in NORWAY – safe for a picnic, or not?
• MOUNTAINS (EVEREST – WHY ‘ONLY’ 8.9KM HIGH?)

• KEY TECHNICAL ISSUES
• Extension-strain fracturing – is easiest
• Mohr-Coulomb problems with rock: cohesion c is too high
• Critical State shear strength limit: looks like UCS, but cannot be



ARCHING – ALSO ABOVE TUNNELS
(Tangential stress and radial stress – make the bridge/tunnel stable)



A selection of 
tunnel failure 
modes when 
higher stress:

• Physical models

• TBM tunnel 
tragedy

• Numerical models
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Tunnel failure mechanisms
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All river diversion tunnels 
(14x16m) fractured like this –
arch and invert. UHE Ita, Brazil

•



‘BRITTLE ROCK CAN FAIL (in tension) DUE TO 

EXTENSION STRAIN OVER-COMING THE 

TENSILE LIMIT, EVEN WHEN ALL THREE 

PRINCIPAL STRESSES ARE COMPRESSIVE’

thanks to Poisson’s ratio, acting together with 

sufficiently anisotropic stresses, as near a tunnel 

(or behind a rock face)



THE ‘Q-system’ ?

As a briefest introduction:

Q means rock mass quality.

Q consists of ratings for six parameters.

=   (Block size) x (friction) x (‘active stress’)
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CANNOT TEST A ROCKMASS ‘SAMPLE’, AS WITH STEEL OR CONCRETE (or soil?). 
‘Q’ saves us from having to perform impossible sizes of in situ rock mass testing.
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HONG 

KONG

PANAMA
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Q = 1000 (or better)

(Q ≈ 100/0.5 x 4/0.75 x 1/1)  

BESIDES LARGE SCALE, WIDE NUMERICAL RANGE OF Q REALISTICALLY 

REFLECTS HUGE POTENTIAL DIFFERENCES IN ROCKMASS PROPERTIES

Q = 0.001 (or worse)

(Q ≈ 10/20 x 1/8 x 0.5/20)
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INDEPENDENT DATA (from Canada, South Africa) shows ‘stress-induced’ 
failure when: σθ max /σc > 0.4 +/- 0.1  …WE GET SAME TREND with Q-system SRF

• Maximum tangential stress estimate: σθ max ≈ 3σ1 - σ3 

Figure from:

Martin et al. 1998)
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Q-SYSTEM, independent case records: If σθ max /σc > 0.4, need:
higher SRF – gives lower Q-value – and more tunnel support.

CASE RECORDS

(Table 6b of Grimstad and Barton, 1993)



NOW 
AN INTERPRETATION 

CLOSER TO THE REALITY





Note AE also
starting at 40% of σc

(Test data from 
Martin, 1997)



• CRITICAL EXTENSION STRAIN:

• Marks start of spalling which is cracking 

in tension. May get propagation in shear)

• (Baotang Shen, in Barton and Shen, 2017)

σcritical tangential stress ≈ ( 0.4 X UCS) ≈ σt /ν

Example of FRACOD modelling of 
1880 (Beamont/English) TBM in 
chalk marl). Here: assume 
σh = 1/3 σv (due to nearby CLIFF FACE)
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Beaumount Tunnel in Chalk Marl

Flow Time (s): 0E+0

Flow Time Step (s): 0E+0

Thermal Time (s): 0E+0

Cycle: 1  of 10

Elastic fracture

Open fracture

Slipping fracture

Fracture with Water

CSIRO & Fracom Ltd

Date:  16/09/2016 14:52:01
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Beaumount Tunnel in Chalk Marl

Flow Time (s): 0E+0

Flow Time Step (s): 0E+0

Thermal Time (s): 0E+0

Cycle: 10 of 10

Elastic fracture

Open fracture

Slipping fracture

Fracture with Water

CSIRO & Fracom Ltd

Date:  16/09/2016 14:52:44
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Beaumount Tunnel in Chalk Marl

Flow Time (s): 0E+0

Flow Time Step (s): 0E+0

Thermal Time (s): 0E+0

Cycle: 20 of 1010

Elastic fracture

Open fracture

Slipping fracture

Fracture with Water

CSIRO & Fracom Ltd

Date:  16/09/2016 14:53:18
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Beaumount Tunnel in Chalk Marl

Flow Time (s): 0E+0

Flow Time Step (s): 0E+0

Thermal Time (s): 0E+0

Cycle: 30 of 44

Elastic fracture

Open fracture

Slipping fracture

Fracture with Water

CSIRO & Fracom Ltd

Date:  16/09/2016 16:26:53
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Tell-tale signs of 
over-stress?

PROBABLY over-
strain.

(Jinping II, China)
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During the August 
heat-wave in UK with 
40° C

WHAT REASONS? CHANGE 
IN ROCK STRENGTH? 
INCREASE IN POISSON’S 
RATIO?



EXTENSION-STRAIN FRACTURING NOW APPLIED TO 
FAILURE OF VERTICAL CLIFFS and MOUNTAIN 

WALLS
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FIRST A LOOK AT CLASSIC SOIL 
MECHANICS SOLUTIONS TO THE 

‘VERTICAL-CUT’ PROBLEM
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(a) Assumed equilibrium of three zones (of 
soil) gives a lower-bound solution for h .        
(Verruijt, 2001)

(b) Upper-bound solution for h involves a 
specific shear surface. (Verruijt, 2001). 

(c) Circular failure surface. Fellenius, 1927  
(‘3.85’ multiplier)   

h ≥ 2c/γ . tan ( 45°+ φ/2) lower-bound                               
h ≤ 4c/γ . tan ( 45°+ φ/2) upper-bound
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‘SOIL MECHANICS’ THEORIES: 

• 2c/γ . tan(45°+ φ/2) ≤ Hc ≤ 4c/γ . tan(45°+ φ/2) 

• (Mohr-Coulomb, lower- and upper-bound)

• UNFORTUNATELY these classic solutions for soil are 3X to 6X IN 
ERROR WHEN EXTENSION FAILURE – and NOT SHEAR 
FAILURE OF INTACT ROCK IS OCCURING.
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El Capitain, Yosemite, California. 

granites, UCS = 100-150MPa.

West Temple, Zion, Utah. 

Sandstones, UCS = 50-75MPa.

Beachy Head, England. Chalks, 

UCS = 10 MPa (saturated ?)

Cappadocia, Turkey. Volcanic tuff, 

UCS = 1-2MPa.

VERTICAL HEIGHT 

LIMITS OF CLIFFS AND 

MOUNTAIN WALLS –

WITH NEW APPROACH:

Hcritical ≈ 100.σt/γν (meters)

(Have assumed σv ≈ γH/100 MPa)

σt = tensile strength (MPa)                                                  

γ = density (when units are tons/m3)                                           

ν = Poisson’s ratio

Barton, 2016
24



FOR APPLYING Mohr-Coulomb WE NEED
THE COHESIVE STRENGTH 

OF INTACT ROCK
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Assumes linear 
envelope 
between tensile 
and compression 
circles.

Actual cohesion 
is higher due to 
curvature.

(Barton, 1976)
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COMPARING ‘SOIL MECHANICS’ SHEAR-STRENGTH-BASED
ESTIMATES of Hc WITH EXTENSION-STRAIN ESTIMATES

1. Sandstone 

σc = 75MPa, 

σt = 5MPa                        

c = ½(75x5) 1/2 =
9.7MPa 

2. Granite

σc = 150MPa, 

σt = 10MPa                          

c = ½(150x10) 1/2 =
19.4MPa                                                   

1. Sandstone ‘mountain wall’  (Hc = 2c/γ x tan (45°+φ/2):   

Hc= 3,001m !

(This is a ‘lower-bound’ estimate!)   

2. Granite ‘mountain-wall’ (Hc = 2c/γ x tan (45°+φ/2):
Hc= 5,456m !  

(This is a ‘lower-bound’ estimate!)

BY COMPARISON EXTENSION STRAIN THEORY:

Sandstone: 100.σt /γν = 100.5/2.5 x 0.25 = 800m 

Granite: 100.σt /γν = 100.10/2.75 x 0.25 = 1,456m

c

27



EXTENSION FAILURES 
CAUSE SHEETING 
FRACTURES,  AND LIMIT 
ULTIMATE WALL HEIGHTS
(NOTE! σt REDUCES, OVER GEO-
MORPHOLOGICAL TIME-SCALES)

SHEAR FAILURE 

(AND TENSION 

CRACKS) 

THREATENING 

FUTURE 

MOUNTAIN ROCK 

AVALANCHE?        

El Capitan, CA. and Holtanna, Antarctic.     
28



For rock 
cliffs and 
mountain 
walls the 
choice is 
clear: 
do not 
use M-C.
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USGS artist 
C.A.Weckerly
Seems to have envisaged a 
future (or past?) ‘failure 
mechanism’.
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SHEETING JOINTS 
(AND ASSOCIATED 
CRACKS)

(WITH HC = 100σt/γν
(EXTENSION-STRAIN-

FRACTURING) DO NOT 
NEED CURVATURE 
TO EXPLAIN 
SHEETING JOINTS)

• Free-solo rock-climbing aces:

• Steph Davis (see her book)

• Alex Honnold (see his book)



World’s 
most 
frequently 
climbed 
rock wall



Honnold and Caldwell, 
June 6th 2018: ‘The Nose’

1 hour 58 mins 7 secs
(3,000 feet, 914m)

33



COMPLICATIONS FROM 

MULTI-COMPONENT

FAILURE-MODES

(slopes + tunnels)
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FOUR COMPONENTS:
process-dependent shear 
failure of e.g. high open-pit 
mine slopes.

(Barton, 1999, 2013).
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From the 
Q-system 
Jr/Ja.

Clay-filled 
joints.



WHAT IS HELPING TO PREVENT SUDDEN COLLAPSES ?
(‘X’ ≈ 50, then 20, then JRC, then Jr/Ja) Barton, 1999  *CcSs crack, crunch, scape, swoosh*

• Bingham Pit: No casualties. Monitored. Progressive failure....i.e. ‘τ = c then σn tan φ’ 37



THIS IS NOT A CIRCUAR 
M-C FAILURE!

NOTE: 
FAULT SURFACE

CcSs?
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Which place to picnic at 
Norway’s Prekestolen?
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Back-wall 
shear(?)
.......  
tensile 
opening 
(?)
.........
triggering 
by           
?

(Photos from 
Katrina Mo, 
NTNU, M.Sc.)40



How many 
geologists, 
engineering 
geologists, 
rock 
mechanics 
people in  
these 
crowds?

How



FINALLY:

WHY ARE THE HIGHEST (15) 
MOUNTAINS IN THE WORLD 

‘LIMITED’ TO 8 - 9km?
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Mount Everest
8,864m
(from Wikipedia photo)

• MISUSE OF ‘TERZAGHI’ 
FORMULA: GIVES 

• Hc = 100 σc /γ

• e.g. 100 x 250/2.8 = 8.9km?

• NO! HAS TO BE CONFINED
STRENGTH AT 9 KM DEPTH 
AND THIS IS MUCH (2x) TOO
HIGH!

• CORRECT LOGIC SUGGESTS 
A LOWER (CRITICAL STATE) 
SHEAR STRENGTH LIMIT.
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THE MAXIMUM 
POSSIBLE SHEAR 
STRENGTH AT 
THE CRITICAL 
STATE ……..

IS OF SIMILAR 
NUMERICAL 
MAGNITUDE TO 
UCS, SAY 200 MPa 

FOR A STRONG

ROCK LIKE 
GRANITE. 

Barton, 1976,
Singh et al. 2011



SHEAR 
STRENGTH 
PROBABLY 
LIMITS THE 
HEIGHT OF  
THE HIGHEST 
MOUNTAINS  

(τmax ≈ σc)

Barton, 1976  

Too high confined strength
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CONCLUSIONS

1. DEEP TUNNELS IN HARD BRITTLE ROCK MAY FRACTURE/BURST DUE  TO 

INITIATION OF EXTENSION FRACTURING, AND PROPAGATION IN SHEAR.

2. THE FAMILIAR ‘0.4 X UCS’ FRACTURE INITIATION STRESS IS ACTUALLY DUE 

TO σt/ν.THIS (ALSO) SIGNALS THE START OF ACOUSTIC EMISSION.

3. CLIFFS AND MOUNTAIN WALL HEIGHTS ARE LIMITED BY THE WEAKEST 

LINK (TENSILE STRENGTH) AND POISSON RATIO, CAUSING EXTENSION 

STRAIN IN (EVEN) A 3D ALL-IN-COMPRESSION STRESS FIELD.

4. THE ‘LIMITED’ HEIGHTS OF THE 15 HIGHEST MOUNTAINS (8 TO 9 km) IS 

CAUSED BY THE (CRITICAL-STATE) LIMITS OF SHEAR STRENGTH, NOT BY AN 

IMPOSSIBLE UCS. CONFINED COMPRESSIVE STRENGTH IS MUCH TOO HIGH.
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